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Biomedical Data Sciences Group
Facts

Cost of collecting data drops, amounts increase exponentially.
We have more data than accurate models. Need better models!

Group’s research

Data Science Algorithms, Models & Tools

 Machine Learning,

 Bioinformatics.

Biology & Medicine Problem Setting & Goals

 RNA processing regulation,

 Clinical data analysis.
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Learning About the Central Dogma

Goal: Learn to predict what these processes accomplish:

Given the DNA, . . . , predict all gene products

f (DNA, ) = RNA g(RNA, ) = protein

Estimating f , g amounts to cracking the codes of
transcription, epigenetics, splicing, . . .
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Learning About the Central Dogma

Three things are crucial:

Biological insights (a.k.a. prior knowledge)
Many observations of the system: (DNA, , RNA)N

i=1

Learning methods to estimate ⇥: f⇥(DNA, ) = RNA
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RNA-seq based Transcriptome Characterization
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c� Gunnar Rätsch (cBio@MSKCC) Modern Challenges in Biomedicine @ Early Detection Research Network 4

Memorial Sloan-Kettering Cancer Center 

http://cbio.mskcc.org
http://www.mskcc.org


RNA-seq based Transcriptome Characterization
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Developmental Biology, Spemannstrasse 38, 72076 Tübingen, Germany, 5Center for Plant Mol. Biology,
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ABSTRACT

Deep transcriptome sequencing (RNA-Seq) has
become a vital tool for studying the state of cells
in the context of varying environments, genotypes
and other factors. RNA-Seq profiling data enable
identification of novel isoforms, quantification of
known isoforms and detection of changes in tran-
scriptional or RNA-processing activity. Existing
approaches to detect differential isoform abun-
dance between samples either require a complete
isoform annotation or fall short in providing statis-
tically robust and calibrated significance estimates.
Here, we propose a suite of statistical tests to
address these open needs: a parametric test that
uses known isoform annotations to detect
changes in relative isoform abundance and a non-
parametric test that detects differential read cover-
ages and can be applied when isoform annotations
are not available. Both methods account for the
discrete nature of read counts and the inherent bio-
logical variability. We demonstrate that these tests
compare favorably to previous methods, both in
terms of accuracy and statistical calibrations.
We use these techniques to analyze RNA-Seq
libraries from Arabidopsis thaliana and Drosophila
melanogaster. The identified differential RNA pro-
cessing events were consistent with RT–qPCR
measurements and previous studies. The proposed
toolkit is available from http://bioweb.me/rdiff and
enables in-depth analyses of transcriptomes, with
or without available isoform annotation.

INTRODUCTION

Deep RNA sequencing has enabled profiling the transcrip-
tional landscape of the cell at unprecedented resolution
[e.g. (1,2)]. Technological advances have dramatically
increased the read coverage and the dynamic range of
RNA-Seq, facilitating a wide range of analyses to
answer pertinent questions. One of the most fundamental
analyses is comparative transcriptome analysis of samples
that have been exposed to different environmental condi-
tions or have variable genetic background. The develop-
ment of computational tools to carry out such pairwise
comparisons is a field of active research and the subject
of this work.
For single isoform genes, the true mRNA isoform abun-

dance is tightly coupled to the number of reads that map
to exonic regions of the corresponding gene (2). A widely
used model to explain the number of mapping reads as a
function of the unknown abundance is the binomial model
and its Poisson limit. Several early methods have directly
used such idealized statistics to test for differential expres-
sion between samples from the raw read count informa-
tion [e.g. (3,4)]. More recent extensions (5–8) generalize
the basic Poisson model to a more flexible class of distri-
butions, such as negative binomial (NB) models. In
contrast to Poisson-based tests, these models account for
so-called overdispersion, i.e. the empirical variability of
counts because of biological or technical factors.
The large majority of genes of higher eukaryotes have

multiple annotated isoforms that are the result of alterna-
tive usage of transcription starts, splice sites, RNA editing
sites or polyadenylation sites. Defining gene expression in
the case of multiple isoforms becomes conceptually diffi-
cult and testing for differential gene expression can easily
be confounded by differential RNA processing events,
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Novel non-parametric statistical test for di↵erential transcript ex-
pression that even works when annotations are incomplete.
http://bioweb.me/rdiff

Application & extension of techniques to Ribosome footprinting
and analysis of e↵ect of drug Silvestrol on translation (+ biology).
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Correspondence may also be addressed to Gunnar Rätsch. Tel: +1 646 888 2802; Fax: +1 646 422 0717; Email: raetsch@cbio.mskcc.org

Published online 12 April 2013 Nucleic Acids Research, 2013, Vol. 41, No. 10 5189–5198
doi:10.1093/nar/gkt211

! The Author(s) 2013. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial
re-use, please contact journals.permissions@oup.com

 by guest on D
ecem

ber 3, 2013
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

Nucleic Acids Research, 2013, Vol. 41, No. 10

Novel non-parametric statistical test for di↵erential transcript ex-
pression that even works when annotations are incomplete.
http://bioweb.me/rdiff

Application & extension of techniques to Ribosome footprinting
and analysis of e↵ect of drug Silvestrol on translation (+ biology).
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Detecting Di↵erential RNA processing
Compare the read distributions in two conditions
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Goal: Design a test to detect di↵erential RNA processing:

(Alternative splicing, promotor usage, NMD, . . . )
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Testing Strategies
Known Transcripts:

Two-step approach
1 Quantification
2 Testing

Avoid quantification?
One-step region testing

Unknown transcripts:

Include transcript
identification in analysis.
1 Detection
2 Region testing
) Complex!

One-step testing on the
read densities!

Detect di!erential RNA processing

Mapped reads Annotation

Quanti"cation

Testing

[Wong et al., Bioinformatics, 2009]
[Yaspo et al., Nucl. Acids Res., 2010]
[Bohnert et al., BMC Bioinf., 2010]

[Stegle et al., Nat. Prec., 2010]
[Anders et al., Genome Res., 2012]

[Drewe et al., Nuc. Acids Res., 2013]
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Density Testing Without Gene Structure

Read density

Gene
structure

Condition A

Condition B
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Density Testing Without Gene Structure

Read density

Gene
structure

Condition A

Condition B

Di!erence of
read densities
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Non-parametric Test for High-dimensional Data

Represent the density of reads
µA/B =

P
N A/B
i=1 �(x

i

)

Compute the distance
between µA and µB :
D(A,B) = kµA � µBkH

Permute reads between
samples to compute p-value

Trick: Match observed
dispersion by subsampling

x1

x2
μ(B )

μ(A )

[Gretton et al., 2008]
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[Gretton et al., 2008]

Drewe et al. (2013) contains proper comparison with other
state-of-the-art methods (e.g., Cu↵Di↵, Miso).
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c� Gunnar Rätsch (cBio@MSKCC) Modern Challenges in Biomedicine @ Early Detection Research Network 9

Memorial Sloan-Kettering Cancer Center 

http://cbio.mskcc.org
http://www.mskcc.org


Non-parametric Test for High-dimensional Data

Represent the density of reads
µA/B =

P
N A/B
i=1 �(x

i

)

Compute the distance
between µA and µB :
D(A,B) = kµA � µBkH

Permute reads between
samples to compute p-value

Trick: Match observed
dispersion by subsampling

0

Observed density 

difference between 

conditions

Density difference between random samples 

[Gretton et al., 2008]

Drewe et al. (2013) contains proper comparison with other
state-of-the-art methods (e.g., Cu↵Di↵, Miso).
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Other Applications

RNA transcript expression [Drewe et al., NAR, 2013]

Ribosome footprinting [Wolfe et al., Nature, 2014]

Protein expression (RPPA, Mass-Spec) [possible/need collaborator]

ChIP-seq peak analysis [Schweikert et al., BMC Genomics, 2013]

CLIP-seq peak analysis [possible/need collaborator]

RNA secondary structure probing [ongoing]

Protein structure probing (NMR?) [possible/need collaborator]

Probing of repetitive polymorphisms [Chae et al., Cell, 2014, i.p.]

. . .
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Application to Ribosome Profiling

[Wolfe, Sing, Zhong, Drewe et al., Nature, 2014]
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Application to Ribosome Profiling

Compound Silvestrol extracted from plant has anti-cancer activities:

[Wolfe, Sing, Zhong, Drewe et al., Nature, 2014]
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Application to Ribosome Profiling

Investigated e↵ect of Silvestrol on translation using rDi↵ in T-ALL:

[Wolfe, Sing, Zhong, Drewe et al., Nature, 2014]
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Application to Ribosome Profiling

Investigated e↵ect of Silvestrol on translation using rDi↵ in T-ALL:

Control
Drug

[Wolfe, Sing, Zhong, Drewe et al., Nature, 2014]
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Application to Ribosome Profiling
Found a motif that was strongly in enriched in detected genes:

G-quadruplex structures 

[Wolfe, Sing, Zhong, Drewe et al., Nature, 2014]
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Silvestrol’s Anti-Cancer Activity

[Wolfe, Sing, Zhong, Drewe et al., Nature., 2014]
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Silvestrol’s Anti-Cancer Activity via eIF4A

[Wolfe, Sing, Zhong, Drewe et al., Nature., 2014]
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Novel tool for identifying novel splicing variants, di↵erential analysis
and visualization. http://bioweb.me/spladder

Integrative splicing analysis of Kidney Renal Clear Cell Carcinoma.
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SplAdder: Detection of Novel Splicing Events

Building the Splicing Graph

Take all annotated transcript isoforms of a gene

Resolve redundencies by graph representation

T1E1 T1E2 T1E3 T1E4

T2E1 T2E2 T2E3

T3E1 T3E2 T3E3

T4E1 T4E2

Isoform 1

Isoform 2

Isoform 3

Isoform 4
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Splicing Graph
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Splicing Graph Augmentation

Criteria for Augmentation

Support from exonic coverage

Splice junction evidence from split alignments

coverage

split alignments
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Extract Alternative Splicing Events

Define alternative splicing events as minimal subsets of nodes in
the graph

Extract one sub-graph per event ! genelets

http://bioweb.me/spladder
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Extract Alternative Splicing Events

Define alternative splicing events as minimal subsets of nodes in
the graph

Extract one sub-graph per event ! genelets

Alt 5’ 

http://bioweb.me/spladder
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Extract Alternative Splicing Events

Define alternative splicing events as minimal subsets of nodes in
the graph

Extract one sub-graph per event ! genelets

Alt 5’/ 3’ 

http://bioweb.me/spladder
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Extract Alternative Splicing Events

Define alternative splicing events as minimal subsets of nodes in
the graph

Extract one sub-graph per event ! genelets

Alt 5’/ 3’ 

Exon Skip 

http://bioweb.me/spladder

c� Gunnar Rätsch (cBio@MSKCC) Modern Challenges in Biomedicine @ Early Detection Research Network 18

Memorial Sloan-Kettering Cancer Center 

http://bioweb.me/spladder
http://cbio.mskcc.org
http://www.mskcc.org


Extract Alternative Splicing Events

Define alternative splicing events as minimal subsets of nodes in
the graph

Extract one sub-graph per event ! genelets

Alt 5’/ 3’ 

Exon Skip 

Intron Retention 

http://bioweb.me/spladder
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Computing the Splicing Index

Utilize RNA-Seq Evidence

Count read evidence for each intron edge in the graph

Compute splicing index as count ratio between the two isoforms

62.5% of isoforms have the cassette exone spliced in

http://bioweb.me/spladder
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Visualizing Splicing with SplAdder

Condition 1 Condition 2

Aggregated coverage information of over multiple conditions.

Condition 1 Condition 2 Condition 3

Distribution of Splicing Indexes. Splicing Graph for a gene.

http://bioweb.me/spladder
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Splicing Analysis Across Multiple Cancer Types

Goals
1 Identify cancer-specific splicing patterns
2 Identify variants regulating splicing in same gene (cis)
3 Identify variants regulating splicing in other cancer genes (trans)

TCGA provides RNA-seq and matching exome-Seq data

RNA-seq  Find & quantify splicing events

Exome  Identify variants in exons & flanking intronic regions

Problem: Non-uniform processing (alignments & variant calling)
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RNA-Seq Data Sources

BLCA (122/16)

BRCA (843/105)

COAD (199)

GBM (170)

HNSC (302/37)

KIRC (499/71)

UCEC (318/4)

READ (77)

OV (420)

LUSC (310/25)

LUAD (355/57)

LAML(173)

> 4,000 TCGA Samples
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RNA-Seq Data Sources

BLCA (122/16)

BRCA (843/105)

COAD (199)

GBM (170)

HNSC (302/37)

KIRC (499/71)

UCEC (318/4)

READ (77)

OV (420)

LUSC (310/25)

LUAD (355/57)

LAML(173)

> 4,000 TCGA Samples

Computing at cluster colocated with CGHub

) Re-mapping (STAR): ⇡ 6CPU years

) Splice variant quantification (SplAdder): ⇡ 1.5 CPU years
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RNA-Seq Data Sources

BLCA (122/16)

BRCA (843/105)

COAD (199)

GBM (170)

HNSC (302/37)

KIRC (499/71)

UCEC (318/4)

READ (77)

OV (420)

LUSC (310/25)

LUAD (355/57)

LAML(173)

> 4,000 TCGA Samples

Geuvadis

198

TCGA UNC
Normals

551

ENCODE

518

Total: > 5,200 Samples
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Splicing Variation Across ⇡4,000 Cancer Samples

High Confidence:
More than 10 spliced reads.
Each isoform is observed in at least 10 samples.
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Annotation vs. SplAdder & Tumor vs. Normal
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Qualitative Di↵erences: Cancer-specific Splicing
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Quantitative Di↵erences: Shift in Abundances

Example: TPM1 - Tropomyosin 1
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Comprehensive Clinical Decision Support Systems
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1st Steps: Topic Models & Molecular Pathology

Text%summary%in%terms%of%topic&presence&

Figure 9. Cross-section topic correlation matrix. Topics with high Pearson
correlation coefficient and low p-values are highlighted in yellow. Clusters
appear to indicate significant overlap in content between HPI and IMP.

striking relationships between these two sections with the
Chief Complaint and Review of Systems/Physical. This is in
contrast to Family History and Social History, which appear
to lack significant correlation to other sectional content.

In context it seems sensible that a physician’s consult
notes would show similarities between patient complaints,
their present illness, bodily symptoms discussed during a
physical review and the doctor’s impressions. Meanwhile,
Family History and Social History contain many unique
patient details. From this analysis it appears those details
are topically unrelated to patient illness.

C. Mutation Correlation

The Sequenom panel tests for mutations that are already
known to exist in certain types of cancers. The goal of
this correlation study was to see if we could independently
re-identify any known relationships between mutations and
cancer phenotypes as a proof-of-concept to test the reliability
of using topic modeling to generate useful labeling of
patients and find meaningful correlations. If we examine the
strongest correlations between patient topics and mutation
test results (those where r > 0.1 and p < 0.0005), we find
several interesting correlations.

We discovered several topics with notable correlations to
specific genetic mutations. First, we examined individually
these strongest correlations between patient topics and mu-
tations results. We found that 0.27% of topic-mutation pairs
were notably correlated. In Table I we show the specific in-
dividual top correlations for the Impressions & Plan section
with 20 topic groups. When reviewing the highest correlated

Table I
TOP MUTATION-TOPIC CORRELATIONS BETWEEN POSITIVE MUTATION

TESTS AND IMPRESSIONS & PLAN 20 TOPIC GROUP.

Mutation Topic words r p-value
NRAS-Q61 melanoma, trials, options 0.31 3.8E-05
BRAF-V600 melanoma, trials, options 0.29 1.6E-07
EGFR-EXON-19 mutational, lung, testing 0.27 4.4E-05
BRAF-V600 thyroid, disease, PET 0.21 1.6E-07
EGFR-L858 mutational, lung, testing 0.16 1.8E-19
NRAS-Q61 thyroid, disease, PET 0.16 3.8E-05
EGFR-T790 mutational, lung, testing 0.16 4.8E-25
PIK3CA-H1047 breast, cancer, positive 0.14 5.0E-20
EGFR-EXON-20 mutational, lung, testing 0.11 4.5E-07

Table II
REPEATED MUTATION-TOPIC CORRELATIONS

Mutation Correlated topic words
BRAF-V600 melanoma, excision, malignant, wide
BRAF-V600 thyroid, papillary, carcinoma, neck
BRAF-V600 BRAF, melanoma, ipilmumab, clinical
EGFR-* lung, adenocarcinoma, erlotinib, Stage IV
EGFR-* EGFR, mutation, lung, no tobacco
KRAS-A146 colon, metastatic, liver, sigmoid
NRAS-Q61 melanoma, excision, malignant, wide
NRAS-Q61 thyroid, papillary, carcinoma, neck
PIK3CA-H1047 breast, positive, invasive, ductal

items we repeatedly noted topics correlating to the following
mutations: BRAF-V600, several EGFR mutations, KRAS-
A146, NRAS-Q61, and PIK3CA-H1047. Furthermore, these
mutations paired with multiple topics but because of the
topic stability and overlap in sectional content discussed
earlier, we were able to see a pattern of content emerge from
these correlated topics. Table II shows the most common
topic content associated with these mutations.

We first notice that for BRAF-V600 and the EGFR
mutations that ‘BRAF’ and ‘EGFR’ show up in commonly
correlated topics. This is promising since it implies that
our clustering and correlation study is finding reasonable
correlations between note content and mutation results. More
importantly, these correlations also find notable relationships
in less obvious areas. For example, “NRAS” is never seen in
the topic content correlating NRAS-Q61 to melanoma and
thyroid cancer. For EGFR mutations, we see a relationship
to lung cancer and erlotinib outside the topics containing
“EGFR””.

In the bi-clustering step, we categorized each relationship
between a topic and a mutation using the same standards for
labeling the strongest correlations. Then, using the algorithm
described in [19] we learn bi-clusters of correlated mutations
and topics. Using this process we discover that BRAF-V600
and NRAS-Q61 mutations correlate to the same topics as
each other, and can visualize the cluster between EGFR-
EXON-19, EGFR-EXON-20, EGFR-L858 and EGFR-T790
and topics containing “EGFR, mutation, no tobacco” and
“erlotinib, lung, adenocarcinoma.” See Fig. 10 for the bi-
clustering results discovered between the Sequenom muta-
tions and Chief Complaint 100 topics.

Since the Sequenom panel tests for mutations that are

Sta1s1cal%%
Associa1on%

Chan%et%al.,%…,%Gardos,%Artz,%Rätsch,%2013%
Karaletsos%et%al.,%…,%Rätsch,%2013%

Data: ⇡200k text notes (⇡6500 patients) + small mutation panel
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Next Steps: Language Model & Normalization

Summarization works for standardized vocabulary

Challenging for diverse texts from many MDs

Google: Nonlinear embedding to vector space (word2vec, 2013)

Use all of MSKCCs text data to learn cancer language model

“Normalize” documents for subsequent analysis

Data: ⇡2M text notes (⇡290k patients)
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Patient Time Lines with EHR Summaries

Summarized text can be visualized and computed on:

Text notes can be categorized (e.g., good news/bad news)

Data integration w/ lab tests for summary of patient ‘fitness‘

Predictive models of patient/disease progression

Data: ⇡2M text notes (⇡290k patients) + ⇡15k genomic panels
per year

[Future of] http://cbioportal.org
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Summary

rDi↵ detects di↵erentially covered regions & has many
applications

Application: Ribosome footprinting revealed RNA G-Quadruplex
elements in 5’ UTR that interacts with compound via eIF4a

SplAdder identifies and characterizes alternative splicing events

Application: Characterize tumor/normal splicing di↵erences;
major splicing reprogramming; transmembrane proteins

Topic models & word embeddings allow document
summarization to abstract knowledge of patients

Application: Association study between patient characteristics
and somatic/germline variants of patients
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From Methods to Biomedical Data and Back!

Strategies:
1 Know your methods well. Develop & Extend. Publish.
2 Develop usable tools. Publish.
3 Identify challenging, relevant applications. Collaborate, publish.
4 Changed problem formulations, limitations, new analysis

approaches, new data types or ideas? Go back to 1.
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S. Sonnenburg, G. Rätsch, A. Jagota, and K.-R. Müller. New methods for splice-site
recognition. In Proc. International Conference on Artificial Neural Networks, 2002.
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